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Abstract
The ground-state binding energy of the exciton in a finite-potential quantum
disc setting is calculated variationally to study the change in dimensionality of
the exciton within the limiting cases of the quantum well, wire, and dot, as well
as the intermediate regime between these limiting geometries. Quantitative
comparisons have been made with previous calculations using different trial
wavefunctions to show the superiority of the present trial wavefunction in the
quantum disc setting and to further illustrate the behaviour of the exciton in
the quantum dot limit. Using the binding energy obtained from the present
calculations, we further calculated the virial theorem number for the exciton in
various confinement geometries, to disprove the recent claim of the existence
of universal-constant virial theorem numbers for the quantum wells and wires.
Also, the dimensionality parameter of the fractional-dimensionality model for
confined excitons in the various confinement geometries has been calculated
to facilitate discussion of its applicability to these structures, including the
quantum dot limit.

1. Introduction

It is well established that the confinement of excitons in quantum wells yields enhanced
excitonic effects (such as the binding energy and oscillator strength) which can be exploited
in the design of novel optoelectronic devices. Advances in nanoscale fabrication techniques
have further brought about the reduction of the effective dimension of excitonic states—from
quasi-two-dimensional (2D) down to the quasi-one-dimensional (1D) and ‘zero’-dimensional
(0D) states. The question of whether excitonic states are even more enhanced and the extent of
the enhancement in these reduced-dimensional (<2D) structures has thus been a topic of much
interest in the past few years [1–15]. In view of the rapid development in crystal growth and
fabrication techniques, as we progress from microtechnologies to nanotechnologies whereby
devices are designed in the nanometre range, it becomes increasingly necessary to address
the concern of the exciton losing its enhanced effects in the ultrasmall quantum structures,
due to the increased penetration of the exciton wavefunction into the barrier regions in the
direction of diminishing spatial confinement. The exciton binding energy typically increases
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with the initial decrease in spatial confinement to reach a peak at some critical confinement
width (which is dependent on the height of the potential barrier), then decreases with further
decrease in confinement width when the exciton wavefunction extends substantially into the
barrier regions and recovers a higher dimensionality. This implies that there exists certain
critical confinement limit where the quantum confinement effect is a maximum, beyond which
the bulk effect sets in again. Hence, the concern in the near future will be to determine not
only the length scale on which the quantum confinement effects would become appreciable
with the decrease in spatial confinement, but also when these enhanced effects would be lost.
The estimation and understanding of this critical confinement limit in quantum 2D, 1D, and
0D structures is hence of relevance.

Recently, there has also been growing interest in two topics regarding the confined
excitonic states. The first is the fractional-dimensional model of the confined exciton [16–21],
and the second is the possible existence of universal virial theorem numbers [22–24] of confined
excitons in the various quantum structures. A common reason for the interest in these two
topics is the possible simplification of the intensive computation involved in obtaining exciton
binding energies in the quantum structures, especially in the wire and dot. In the model
of fractional-dimensional space, He [16–18] proposed that the Wannier–Mott excitons in an
anisotropic solid can be treated as ones in an isotropic fractional-dimensional space, where the
dimension is deformed by the degree of anisotropy. The anisotropic interaction in 3D space
then becomes isotropic in a lower-fractional-dimensional space. In this space, the confined
exciton problem returns to one of a fractional-dimensional hydrogenic Schrödinger equation
with discrete exciton bound-state energies (En) given by

En = Eg − Ryd[
n + (αf − 3)/2

]2 (1)

where Eg is the band-gap energy, n = 1, 2, . . . is the principal quantum number, and Ryd is
the 3D exciton Rydberg energy. Here, only a single parameter, αf (known as the degree of
dimensionality), is needed to incorporate the effect of change in the confinement geometry
on the strength of the interaction; and setting αf = 3, 2, and 1 leads to the well-known
integer-dimensional results. Using equation (1) the estimation of the exciton energy boils
down to the approximation of αf . This approach has been adopted by Christol et al [19, 20]
in their calculations of the exciton binding energies in quantum well and wires, which yield
reasonable results as compared with the more computationally intensive methods. Also, αf
has been employed to estimate the Stark shift in exciton complexes in quantum wells [21].
According to the fractional-dimensional model, other quantities, such as the exciton effective
radius and oscillator strength in the various quantum structures, can also be calculated from
simple equations involving αf [16–20].

As for the virial theorem for confined excitons, recently Rossi et al [22] found that in the
strong-confinement limit, the same potential-to-kinetic-energy ratio holds for quite different
wire cross-sections and compositions. This ratio (=4) is found to be twice the value imposed
by the conventional virial theorem for 3D and 2D systems. If such a scaling rule does exist for
excitons in these quantum structures, it can be exploited in simplifying the calculations of the
confined excitonic states, as in the calculations of Thilagam [23]. The virial theorem states
that for an interaction potential of the form

V (rij ) =
∑
ij

aij r
v
ij

between two charges i and j (where r = |�ri−�rj | and the as are constants), the relation between
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the kinetic (T ), potential (V ), and binding (Eb) energies is given by

T = v

2 + v
Eb = v

2
V.

If the virial theorem number, v, is known to be some fixed universal value, then the effective
potential describing the interaction between the electron and hole in an electron–hole pair can
be approximated in the form Veff ∼ −rv which may differ from the usual Coulombic form
for 3D and 2D systems. A simplified exciton model whereby the exciton is solely governed
by this effective potential can then be used for strongly confined systems.

In the present work, we study the exciton in a quantum disc in regard to the above concerns
and subjects, using a variational approach and the effective-mass approximation with a finite-
confinement-potential model. As proposed by Kayanuma [3], by varying the radius (R) and
width/height (L) of the quantum disc/cylinder, the quantum disc arrangement allows one to
systematically explore the various limiting situations of the bulk (for R and L � aB , where
aB is the 3D exciton Bohr radius), the quantum well (for R � aB and L < aB), the quantum
wire (for R < aB and L � aB), and the quantum dot (for R < aB and L < aB), as well
as the transition in the intermediate regime of these limits in a continuous, ‘unified’ manner.
Here, we are also interested in the dimensionality crossover in the critical confinement limit
where quantum confinement effects are rapidly overwhelmed by the bulk effect. Although
previous work [5–7] has been done on the variational calculation of the exciton in the quantum
disc, the authors have used different trial wavefunctions which have their individual limitations
for certain geometries of the disc. Also there seems to be a lack as regards comparison and
justification of these wavefunctions employed in quantum disc calculations, as the success and
accuracy of results based on variational methods often depend on the parameters chosen and
the functional form of the trial wavefunction used. Here we use a superior trial wavefunction
which can account for the correct behaviour of the exciton in the limiting geometries where the
previous trial wavefunctions fail, to quantitatively study and compare them. There have been
concerns as to whether the effective-mass approximation could still be valid in the quantum dot
limit when the size of the exciton could be of the order of the average lattice constants of the bulk
semiconductor. Recently, Marin et al [25] performed variational calculations of the exciton
energies for spherical dots of radius in the range of 5–40 Å to compare with both experimental
and other theoretical data for CdS, CdSe, PbS, and CdTe crystallites; and they found that
the effective-mass approximation is still appropriate for those geometries. Moreover, in the
limit of very small spatial confinement where the exciton extends substantially into the barrier
material, the effective-mass approximation could again be an appropriate approximation with
the exciton described by the effective mass of the embedding barrier material. Using the exciton
binding energy and wavefunction obtained variationally, we further proceed to calculate the
virial theorem number and the fractional-dimensional parameter for a wide range of quantum
discs and cylinders which are representative of the various limiting confinement situations.
The validity of the virial theorem conjecture of Rossi et al [22] and the applicability of the
fractional-dimensional parameter for these quantum structures are then systematically studied
and discussed.

2. Model calculation

Here, we adopt a coordinate system similar to those used in previous works [5–7]. For com-
pleteness, we show the coordinate arrangement and orientation in figure 1. The in-plane
coordinates on the circular cross-section of the disc/cylinder are denoted by rc where c = e, h
for the electron and hole respectively; and the cylinder axis is taken as the z-axis.



1488 Tong San Koh et al

zezh

e

h

re

rh

Rx

y

z

L

Figure 1. The various coordinates in the quantum disc arrangement. The rcs denote the in-plane
coordinates and the zcs denote the positions along the disc/cylinder axis.

2.1. Single-particle ground state

We first consider the ground state of a single particle in the quantum disc within the framework
of the effective-mass and envelope function approximations. For compactness, we use the
following notation for the mass of the particle:

m‖
c(rc) = mcθ(R − rc) +m′

cθ(rc − R) (2a)

m⊥
c (zc) = mcθ

(
L

2
− |zc|

)
+m′

cθ

(
|zc| − L

2

)
. (2b)

Here, mc and m′
c refer to the particle’s effective masses in the disc and barrier materials,

respectively; and θ is the Heaviside step function.
If we consider separately the in-plane and z-axis motions of the particle confined by the

potentials

V ‖
c (rc) =

{
0 if rc < R

Vc otherwise
(3a)

and

V ⊥
c (zc) =

{
0 if |zc| < L/2
Vc otherwise

(3b)

respectively, the corresponding 2D and 1D effective-mass Schrödinger equations are{
− h̄2

2m‖
c

∇2
c + V ‖

c (rc)

}
fc(rc) = E‖

c fc(rc) (4a)

{
− h̄2

2m⊥
c

∇2
c + V ⊥

c (zc)

}
gc(zc) = E⊥

c gc(zc) (4b)

with ground-state solutions of the form

fc(rc) =
{
J0(θcrc) rc � R
BcK0(βcrc) rc > R

(5a)

gc(zc) =
{

cos(kczc) |zc| � L/2
Ac exp(−qc|zc|) |zc| > L/2.

(5b)
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Here, in view of the mass mismatch, θc, βc, kc, and qc are determined from the following
boundary conditions

1

mc

1

fc(rc < R)

∂fc(rc < R)

∂rc

∣∣∣∣
rc=R

= 1

m′
c

1

fc(rc > R)

∂fc(rc > R)

∂rc

∣∣∣∣
rc=R

(6a)

1

mc

1

gc(|zc| < L/2)
∂gc(|zc| < L/2)

∂zc

∣∣∣∣
zc=L/2

= 1

m′
c

1

gc(|zc| > L/2)
∂gc(|zc| > L/2)

∂zc

∣∣∣∣
zc=L/2

.

(6b)

Equations (6a) and (6b) are obtained by requiring the respective wavefunctions and their flux
densities to be continuous at the interfaces with the barrier material. The Ben Daniel–Duke
model [26] is used because of its simplicity. For the full 3D motion, the product fc(rc)gc(zc)
is no longer a solution of the 3D effective-mass Schrödinger equation since the actual 3D finite
confinement potential is not straightforwardly the sum of the finite confinements V ‖

c + V ⊥
c .

Using the perturbational approach suggested by the Le Goff and Stebe [5,6], we write the 3D
finite confinement potential as

Vc( �rc) = V ‖
c (rc) + V ⊥

c (zc) + δVc(rc, zc) (7)

where

δVc =
{

0 if rc < R and |zc| < L/2
−Vc otherwise

(8)

is treated as a perturbation potential. The ground-state energy of a particle in the quantum disc
with finite confinement can then be approximated by

Ec = E‖
c + E⊥

c − 〈fcgc|δVc|fcgc〉
〈fcgc|fcgc〉 . (9)

2.2. Exciton ground state

Using the relative coordinate r = | �re− �rh| = (r2
e + r2

h−2rerh cos θ)1/2, the model Hamiltonian
of the exciton can be written as

H = − h̄2

2m‖
e

{
∂2

∂r2
e

+
1

re

∂

∂re
+
r2
e − r2

h + r2

rer

∂2

∂re ∂r

}

− h̄2

2m‖
h

{
∂2

∂r2
h

+
1

rh

∂

∂rh
+
r2
h − r2

e + r2

rhr

∂2

∂rh ∂r

}
− h̄2

2µ

{
∂2

∂r2
+

1

r

∂

∂r

}

− h̄2

2m⊥
e

∂2

∂z2
e

− h̄2

2m⊥
h

∂2

∂z2
h

+ Ve(re, ze) + Vh(rh, zh)− e2

ε
√
r2 + (ze − zh)2

(10)

where µ(re, rh)−1 = m
‖
e(re)

−1 + m‖
h(rh)

−1 is the in-plane reduced mass of the exciton and
ε is the dielectric constant. We have assumed that the wavefunction is independent of θ in
deriving equation (10). Polarization and image charge effects due to dielectric mismatch can
be significant when there is a large dielectric discontinuity between the quantum structure
and the surrounding medium, as in the case of ‘free-standing’ vacuum/GaAs/vacuum quantum
structures [15]. Although the image charge effects has been found to enhance the binding
energy of excitons in the Ga1−xAlxAs quantum wells (by not more than 1 meV) [10], Banyai
et al [2] have shown that this polarization effect could be reduced in the quantum wire as
compared with the quantum well. They performed their calculations using a wire-to-barrier
dielectric constant ratio of 1.3 for Ga1−xAlxAs, and since the materials commonly used for the
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manufacture of Ga1−xAlxAs quantum wires have a dielectric constant ratio less than 1.3, they
have neglected such effects in their subsequent calculations [2]. Hence, we believe that the
present simplified model could still give a reasonable approximation of the exciton behaviour
in the Ga1−xAlxAs quantum cylinder.

Here, we adopt the variational approach to estimate the ground-state exciton binding
energy and wavefunction. As in the previous works, we may choose a trial wavefunction of
the following form:

ψex = Fe(re, ze)Fh(rh, zh)φ(r, ze, zh) = fe(re)ge(ze)fh(rh)gh(zh)φ(r, ze, zh) (11)

where φ(r, ze, zh) is the relative wavefunction describing the internal motion of the electron–
hole pair. Previously, two different relative wavefunctions have been used in the variational
calculation for the ground-state exciton in the quantum disc. Kayanuma [3] employed the
isotropic hydrogenic wavefunction ansatz

φ1(r, ze, zh) = exp
[
−α

√
r2 + (ze − zh)2

]
(12)

with a single variational parameter, α. Although this wavefunction should be good in the limit
of largeR andL or when an isotropic behaviour is expected, it may not be adequate in situations
when the exciton is highly anisotropic, such as in a narrow quantum well or thin quantum wire.
It should be noted that even with this simplified wavefunction, the variational treatment required
numerical evaluation of fourfold integrals before the single-parameter energy minimization
(with respect to α), which hence imposes a heavy computational burden. Later, Le Goff and
Stebe [5, 6] introduced a two-parameter relative variational wavefunction:

φ2(r, ze, zh) = exp[−αr] exp[−γ (ze − zh)2] (13)

in an attempt to avoid the occurrence of the fourfold integrals, and to account for possible
anisotropy; and Susa [7] adopted the same wavefunction and included the effective-mass mis-
match which was ignored in [5, 6]. However, we note that this wavefunction is separable in
the in-plane and z-coordinates and cannot reproduce the proper 3D hydrogenic wavefunction
in the bulk limit where the exciton is isotropic. Hence the above two trial wavefunctions have
their individual limitations, in the sense that they may only be good for certain ranges ofR and
L. Also, to the best of our knowledge, no quantitative comparisons have been made between
the results given by these two trial wavefunctions for the quantum disc.

In the present calculation, we use the following anisotropic two-parameter relative
wavefunction which has proved to be superior for quantum well structures:

φ3(r) = exp
[
−α

√
r2 + γ (ze − zh)2

]
. (14)

The form of this ansatz not only satisfies the anisotropy requirements, but also yields the correct
hydrogenic form in the bulk limit. We also note that φ1 is a special case of the more general
φ3, and that the fourfold numerical integrations will still have to be performed, together with
a two-parameter minimization, which hence leads to a much heavier computational burden.

The ground-state energy and wavefunction can be determined by minimizing the exciton
energy functional

〈Eex(α, γ )〉 = 〈ψex |H |ψex〉
〈ψex |ψex〉 (15)

with respect to both α and γ . The binding energy is defined by

Eb = Ee + Eh − Eex. (16)
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Once the binding energy is obtained, we may proceed to calculate the virial theorem
number

v = −EC
EK

(17)

where EC = 〈−e2/ε
√
r2 + (ze − zh)2〉 is the Coulombic energy term evaluated using the

optimized parameters α and γ ; and EK is the kinetic energy term.
The binding energy in the fractional-dimensional model is given by the second term on the

right-hand side of equation (1). For the ground-state exciton, n = 1, and αf can be calculated
from

αf = 1 + 2

(
Ryd

Eb

)1/2

(18)

after some rearrangement.

3. Results and discussion

In order to make quantitative comparisons of the binding energies obtained using different trial
wavefunctions, we have performed variational calculations using the isotropic wavefunction
φ1 in equation (12) and the two-parameter anisotropic wavefunction φ3 (equation (14)) to
allow comparison with the results previously obtained by Susa [7] using the two-parameter
separable wavefunction, φ2 (equation (13)). We have hence adopted the same Ga0.7Al0.3As
material parameters as Susa [7]. The effective masses for the electron and heavy hole for
Ga1−xAlxAs are respectively me = 0.0665 + 0.0835x and mh = 0.34 + 0.42x in units of the
free-electron mass, with the dielectric constant ε = 13.18 − 3.12x. The band-gap energy is

Eg =
{

1.424 + 1.247x 0 < x < 0.45
1.424 + 1.247x + 1.147(x − 0.45)2 0.45 < x < 1.0

(19)

and a 65–35 ratio is assumed between the conduction band and valence band offsets. Using
these material parameters, the 3D Rydberg is Ryd = 5.048 meV and the 3D Bohr radius is
given by aB = 116.50 Å for the heavy-hole exciton.

3.1. Exciton binding energy

Figure 2 shows the calculated exciton binding energy as a function of the radius of the quantum
disc R for widths L of 70 Å and 100 Å. We choose to compare these two values of L with
the results of Susa [7], as it was explained by Le Goff and Stebe [5, 6] that the separable
wavefunction, φ2, is expected to be a good approximation in the limit of strong quantum
confinement and when L/R < 1. From figure 2, we see that both φ1 and φ3 yield consistently
higher binding energies than φ2. This means that both φ1 and φ3 give lower exciton energies
(Eex) than φ2, and in a variational sense, implying that they are better trial wavefunctions.
We also note that for smaller R-values, the difference between the binding energies given by
φ2 and φ3 becomes larger, while the binding energies given by φ1 converge towards those
of φ3. It is interesting to note that even though φ2 has two variational parameters, it could
not perform better than φ1 variationally. We believe that one possible reason is its separable
form. As a result of the separable ansatz, using φ2, integrations over certain coordinates can
be analytically performed independently of the others, thus reducing the numerical cost of
computations. The exciton energy functional can then be written as the sum of terms which
are also separable functions of the in-plane coordinates (with α) and z-coordinates (with γ ),
except for the Coulombic term, which is treated by an asymptotic approximation approach



1492 Tong San Koh et al

Radius (A)

0 100 200 300

B
in

d
in

g
 E

n
er

g
y 

(m
eV

)

0

10

20

30

40

50

Radius (A)

0 100 200 300

B
in

d
in

g
 E

n
er

g
y 

(m
eV

)

0

10

20

30

40

50

(a) (b)

Figure 2. The exciton binding energy in the quantum disc is shown as a function of the disc radius
R, for disc widths of (a) L = 70 Å and (b) L = 100 Å. The circles represent the current results
obtained using φ3, the triangles represent the results obtained using φ1, and the squares represent
the results obtained using φ2 from reference [7].

(see equation (44) in reference [5]). Physically, such an energy expression seems to imply a
largely ‘separable behaviour’ of the exciton. However, the success of the variational method
depends on choosing a trial function which incorporates the correct qualitative features of
the state. This probably also explains the larger deviation of the binding energies obtained
for smaller R-values (with the diameters of the discs comparable to the widths), where the
separable wavefunction and energy assumptions become less valid. On the other hand, φ1

performs better in this range (i.e. yields results closer to φ3), again indicating a rather isotropic
behaviour of the exciton. Hence, considering that heavier computation is required for φ3 than
for φ1, and the relatively small difference between the binding energies given by these two trial
wavefunctions, we may say thatφ1 should still be a good trial wavefunction for the ground-state
exciton in the quantum dot limit.

Figure 3 displays the transition of the exciton binding energies between quantum discs
of various values of R and L, obtained using the present Ga1−xAlxAs material parameters.
We first compare the present results with the more familiar cases of the quantum well and
wire. For the quantum discs with large values of R (∼300 Å) which should approach the
case of the quantum well, the binding energy as a function of L ranges from about 9.57 meV
(1.89 Ryd) at L = 300 Å to a peak value of 15.12 meV (2.99 Ryd) at L  30 Å. These values
are still slightly higher than those typical of quantum wells of the same L, indicating that the
in-plane confinement still has an effect on the exciton. For the quantum cylinders of large
L (∼300 Å) and R < 100 Å which approach the situation of the quantum wire, the binding
energy reaches a peak value of 26.28 meV (5.21 Ryd) at R  20 Å, which is again higher
than previous Ga1−xAlxAs quantum wire calculations [4,20]. However, here we note that the
binding energy decreases rather quickly with a further increase in L, and should approach a
smaller value for a largerL closer to the quantum wire limit. For the smaller values ofR andL
(�100 Å), the binding energy increases sharply to reach a high value of 46.21 meV (9.15 Ryd)
at R  20 Å and L  30 Å. This is the strong-confinement regime of the cylindrical quantum
dot where the exciton is severely restricted in all spatial directions and quantum confinement
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Figure 3. The exciton binding energy in the
quantum disc is shown for various values of
disc radius (R) and width (L) to illustrate
the transition between the various confinement
geometries representative of the quasi-3D,
quasi-2D, quasi-1D, and quasi-0D cases.

effects are maximum. Due to the limitations of the previous separable trial wavefunction [5–7],
such a high value of the exciton binding energy in the quantum disc has not been achieved
variationally in the past using the finite-potential model. The present results again support the
belief that the excitonic states should be enhanced and are more stable in a quantum dot than
the wire and well.

It is worth noting that the binding energy approaches the bulk limit towards the four
corners of the binding energy surface plot in figure 3, and except for that approaching large
R and L (=300 Å), the corners are representative of the dimensionality crossovers where the
bulk effect sets in. Also, for extremely small widths of L � 30 Å, and finite R ∼ aB , the
quasi-1D situation is restored as the exciton is again becoming unconfined along the cylinder
axis. Similarly, for the ultrasmall-R but finite-L limit (R � 20 Å and L ∼ aB), we again
have a quasi-2D situation, as the exciton extends into the barrier regions along the in-plane
directions and is confined only along the z-axis. We note that although the effective-mass
boundary conditions in equation (6) allow the exciton to be described in terms of the different
masses of the disc and barrier materials, such an exciton in the ultrasmall R but finite-L limit
has two of its spatial dimensions largely described by the parameters of the barrier material.
It should then behave more like an exciton of the embedding barrier material than that of the
disc material. This also implies that the exciton could have energies (kinetic and correlation)
significantly different from those of the ‘normal’ exciton within a conventional quantum well.

It has been pointed out by Le Goff and Stebe [5] that their results revealed that the peak
position of the binding energy as a function of R does not depend strongly on the value of L,
which is consistent with our present results. Here, we would like to add that the peak position
of the binding energy as a function of L also remains fairly constant for different values of
R > 20 Å. However, for the case of R = 10 Å (where the quasi-2D case is again restored) it is
interesting to note that the peak position of the binding energy as a function ofL shifted towards
L  40 Å. We believe that this is due to the exciton behaving more like a barrier-material
exciton as explained above. However, for the situation of the restored quasi-1D behaviour
(when L < 30 Å), a corresponding shift of the peak position as a function of R is not obvious.
This could probably be explained by the rate of recovery to the higher dimensionality, by
looking at the decrease in the binding energy. The restoration of the quasi-2D behaviour was
rather rapid as can be seen from the large drop in binding energy; while the restoration of the
quasi-1D behaviour is much more gradual. This means that the shift in the peak position for
binding energy as a function of R could still be observed for much smaller values of L than
shown in the present results.
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The position of the peak binding energy can hence be estimated to occur aroundL  30 Å
and R  20 Å (or diameter ∼ 40 Å) for the quantum disc or cylindrical quantum dot. It has
been shown in reference [24] that there is a scaling rule for circular and square quantum wires
of the form L/(2R) = 0.9136 such that a square wire of width L is equivalent to a circular
wire of diameter 2R, if the ratio of 0.9136 is achieved. Using this scaling rule, the critical
confinement width for quantum square boxes, which are equivalent to the present quantum
cylinders, can be estimated to be about L ∼ 36 Å. From the behaviours of the peak binding
energy position discussed above, we may conclude that the bulk effect sets in along any
one spatial axis (dimension) at around ∼40–30 Å, fairly independently of the confinement
conditions for the rest of the spatial dimensions. The present results should be useful for
designers of nanoscale devices.

3.2. Virial theorem number

The results of Rossi et al [22] suggest that there is a constant virial theorem value of 4 for
quantum wires of different shapes and sizes. This was concluded from their calculation which
shows that for quantum wires in the strong-confinement regime, a universal scaling of the
mean potential and kinetic energy exists with a potential-to-kinetic-energy ratio (EC/EK ) of
approximately 4. One direct consequence of their interpretation is that for a given value of
the effective Bohr radius a = 〈ψex |r−1

3D |ψex〉−1 in a quantum wire, there is no hope of further
increasing Eb by tailoring the potential-to-kinetic-energy ratio through the geometry of the
confining profile. However, this has been disputed by Zhang and Mascarenhas [24] who have
performed variational studies of the exciton energies in the quantum wells and wires using an
infinite potential barrier. Here, we would like to again examine this issue, using the current
finite-confinement disc formalism, for quantum structures of various confining geometries,
including the limiting case of the quantum dot.

In figure 4(a), we show the virial theorem values v for quantum discs of various values
of R and L which are representative of the limiting cases of the quantum well, wire, and dot,
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Figure 4. The virial theorem number v (a) and the Coulombic energy term EC (b) are shown for
various values of R and for L = 300 Å (circles), L = 100 Å (squares), L = 30 Å (triangles), and
L = 10 Å (diamonds).
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and in figure 4(b), the corresponding values of the Coulombic energy term EC . Our present
results in figure 4 again contradict the findings of Rossi et al [22]. In fact, there is no constant
virial theorem number for the various geometries of the quantum structures considered here.
This is consistent with the results of Zhang and Mascarenhas [24] who argued that the findings
in [22] of different but constant virial theorem values for wells and wires are puzzling, since a
realistic wire will evolve into a well or the bulk as the confinement is gradually relaxed. Here
in figure 4, the virial theorem numbers are all larger than 2 and approach 2 in the limits where
bulk effects are expected, except for the case of R = L = 300, where it has been shown [24]
that v initially increases with the increase in L but subsequently decreases to approach 2 only
at a wide well width of about 10 aB (∼1000 Å for the present material parameters). The
reasons for the virial theorem numbers approaching 2 from above for the quantum wells have
been well discussed by Zhang and Mascarenhas [24]. The physical origin of the nonconstant
virial theorem value lies in the coexistence of single-particle confinement potentials with the
two-particle Coulomb interaction.

To illustrate the behaviour of the virial theorem number for quantum wires, we again
consider the regularized Coulomb potential U = 1/(|z| + γR/aB) proposed by Banyai
et al [2], where γ = 0.3 was found to yield a good fit to earlier more elaborate binding
energy calculations. As the Schrödinger equation for such an effective potential yields bound-
state wavefunctions which can be written in terms of the Whittaker functions [2], we may then
use the ground-state wavefunction to calculate the energy terms, EC and EK , and hence the
virial theorem number. We performed the calculations for R ranging between 0.1 and 1.0 aB ,
and found that v is not a constant, but decreases from the order of 100 (for a small R) down to
about 10.

Next, we would like to further examine the case of the quantum dot. In the strong-
confinement regime of the quantum disc (R,L � 100 Å), the virial theorem number increases
rapidly with decrease in R. This dramatic increase in v is due to both the increase in the
magnitude of the Coulombic term (EC) and the decrease in the kinetic term (EK ). As the
spatial dimensions decrease, the magnitude of the Coulombic term increases rapidly; however,
the kinetic energy of the exciton decreases as the relative motion of the electron and hole
within the exciton becomes severely reduced. In an infinite confining potential, this motion
eventually ‘freezes out’ in the limit of the quantum dot, while the Coulombic term diverges to
infinity. Here, with the finite potential barriers, the magnitude of the Coulombic term behaves
in a similar fashion to the corresponding binding energy; however, the kinetic energy could
decrease to less than 10−2 Ryd, but rapidly increase to regain the bulk behaviour after the critical
confinement limit. As the magnitude of Coulombic energy term could reach of the order of
∼10 Ryd, this means that the virial theorem number could then increase to over a hundred. In
the present work, due to the heavy computation involved in calculating the fourfold integrals,
the minimization with respect to the two parameters (α, γ ) was carried out numerically with
a precision of the order 10−2; hence, we can no longer represent the virial theorem numbers
accurately beyond this range. Nevertheless, the present results do show that the virial theorem
number is in general not a constant for these cylindrical quantum dots of different sizes.

3.3. Fractional-dimensional parameter

It is worthwhile to note that the fractional-dimensional model for excitons originally sets
out to provide a quantitative measure of the anisotropy of confined excitons (through the
dimensionality parameter αf ) for various quantum structures. The dimensionality parameter
with equation (18) was later used to calculate the binding energy of confined excitons in
quantum wells and wires, by estimating the possible values ofαf for these structures. Although
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the results obtained using this simplified calculation method were reasonably good [19, 20],
the authors of [19, 20] have mentioned that the estimation of αf remains somewhat heuristic.
Hence, it would be of interest to back-calculate the values of αf from the above binding energy
results, to serve for future reference and comparison. In figure 5(a) we show αf for quantum
discs of various values of R and L calculated from equation (18). In a typical quantum well
structure, we may immediately deduce that αf should vary between 2 and 3. This is also the
case for the present results for quantum discs of large radius (R = 300 Å), which approaches
the quantum well situation.
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Figure 5. The dimensionality parameter αf is shown for various values of R and for L = 300 Å
(circles), L = 100 Å (squares), L = 30 Å (triangles), and L = 10 Å (diamonds). (a) As given by
equation (18). (b) Assuming the negative root in equation (18).

However, the estimation of αf for the quantum wire is less straightforward. We first note
that for the ground-state exciton in a strictly 1D system, αf = 1 and the exciton binding energy
diverges. As this could not be physically attainable for a realistic system, we expect αf to be
larger than 1. From figure 5, we also note that αf -values around 2–2.2 are shared by quantum
cylinders of L = 300 Å and quantum discs of R = 300 Å. This also implies the possibility
that a narrow quantum well could have the same αf -value as a quantum wire of larger R, as
the excitons in these structures have about the same binding energy. This is in agreement with
Christol et al [19, 20] who suggested 1 < αf < 3 for the quantum wire, and also speculated
that there could be common values of αf for the quantum well and wires. As the same αf
now describes both the quasi-2D and quasi-1D situation, even for the present cases of the
same material parameters, the question now arises as to whether αf is a clear indicator of
the anisotropy and dimensionality of the exciton in these structures. Hence we would like to
remark that in order to lift this ambiguity between the well and wire, and to interpret αf more
effectively, it is necessary to know a priori the integer dimensionality (either 2D or 1D) which
that of the structure most resembles.

As for the quantum dot, the open question now is whether αf would cross the critical value
of 1 if it were to vary continuously from 3 down to zero. One interesting observation from the
present results is that αf apparently does not deviate very much below 2, even for quantum
discs of very smallR andL (∼30 Å), and quickly regains a value larger than 2 for very smallR
and L. Although this behaviour may be expected for the finite confinement, we have to further
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examine the appropriateness of αf as a dimensionality parameter. As discussed previously,
the kinetic energy in the strong-confinement regime of the quantum discs becomes very small
as the relative motion of the electron–hole pair is being reduced in all spatial directions. In
such a situation, we should in principle classify them as quasi-0D structures. However, the
values of αf for these cases are obviously larger than 1, implying that these αf -values could not
represent the dimensionality appropriately. One may argue that the square root in equation (18)
admits a negative value that could give an αf < 1. For these cases of ‘negative roots’, positive
values of αf exist for Eb > 4 Ryd. The αf -values for the negative-root cases are plotted
in figure 5(b). We note that such negative-root αf -values could not render a good physical
interpretation either. In the strong-confinement regime and before the bulk effect sets in, we
should have a decreasing αf as confinement further decreases, instead of αf approaching 1 as
is the case for these negative-root values. Considering the above discussion, we infer that αf
would not be able to adequately serve as a dimensionality constant for a realistic quantum dot.

Next, we examine whether αf could function as an indicator of the anisotropy of the
exciton in the quantum dot limit. We recall that the comparison of the variational results
obtained using the isotropic (φ1) and the present anisotropic (φ3) trial wavefunctions seems
to suggest a rather isotropic behaviour of the exciton in the limit of a small quantum disc.
However, the exciton in such a situation is classified by a value of αf of less than 2, which
when interpreted in the usual sense as for the well and wire (i.e. when compared relatively to
the 3D value of 3) indicates a high degree of anisotropy. It is understandable that the exciton
is now very much compressed in the small quantum disc, but this compression occurs in all
three directions which should not render it as ‘very anisotropic’. In view of the above, if the
fractional-dimensional model were to be applied to the exciton in the quantum dot, the usual
interpretation of the fractional-dimensional parameter may not be adequate and it is necessary
to have a new interpretation of αf .

We would like to further mention the point made by Christol et al [19, 20] that no axiom
in the basic formalism of the fractional-dimensional model strictly confines the dimensionality
constant, αf to be between 0 and 3. For example, in the case of the type II quantum well
superlattice system where the carriers are confined separately in wide-gap and narrow-gap
materials, the average spacing between the bound confined carriers along the growth direction
may be larger than it is in the 3D crystal, which causes the binding energy to be smaller than
Ryd. In this case, αf becomes larger than 3 to account for this ‘barrier screening’ effect. We
then have to question the physical significance of having a dimensionality or anisotropy greater
than 3. In this regard, we tend to agree with Christol et al that αf should be viewed more as a
‘compression/dilation factor’ (accounting for the spatial concentration of the wavefunctions)
and not purely as an anisotropy or dimensionality parameter.

Lastly, we wish to point out that despite the above criticisms, the fractional-dimensional
model does have several advantages, as it greatly simplifies the estimation of some important
and useful parameters. In particular, the oscillator strength fn of the nth confined exciton state
can be quickly estimated [20] using

f

fex
=

(
n +

αf − 3

2

)−3

(20)

(where fex is the 3D exciton oscillator strength) once αf is known.

4. Conclusions

The binding energy of an exciton in a quantum disc and the limiting cases were studied using a
variational approach and the effective-mass approximation with a finite-confinement-potential
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model. It was demonstrated that our two-parameter anisotropic trial wavefunction describes
the exciton behaviour better than those used in previous calculations. Transitional behaviours
between the quantum dot, wire, well, and bulk were studied in a continuous and unified manner.
It was found that in various systems, an optimal confinement exists where the effects of quantum
confinement are the largest. On the basis of these calculations, it was further shown that the
dimensionality parameter αf can be viewed more appropriately as a ‘compression or dilation
factor’. Our calculated results also disprove the recent claim that there exists a universal-
constant virial theorem number for the quantum wells and wires.
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